9th ANNUAL DEPARTMENT OF PATHOLOGY YOUNG INVESTIGATORS’ DAY
POSTER SESSION
Thursday, April 5th, 2007
TURNER CONCOURSE
REGISTRATION FORM

E-mail COMPLETED Registration form and abstract to:
Stacey Morgan (smorgan9@jhmi.edu) on or before
Friday, March 16th, 2007

If you have questions or problems regarding your submission, please contact Stacey Morgan via e-mail (smorgan9@jhmi.edu)

Applicant’s Name: _Paul Esteso__________ Degree: __BS_____
Applicant’s Division: _____SOM_________________________________
Faculty Preceptor: Dr. Grover Hutchins ____________________________
(Must hold a primary appointment in Pathology)
Appointment Category: _____House Staff _____Clin Fellow _____Research Fellow
 ____Medical Student __X___Graduate Student
(Program:___CMM_____
Register for: _____ Clinical Research ____Translational Research ___X___Basic Research
Full Poster Title *Hemorrhagic endovasculitis is a proliferative and time-dependent lesion occurring secondary to stoppage of fetal placental blood flow
Where has the work been presented?
Meeting Name _______SPP 2006 Interim Meeting______________________
Meeting Date _______October 5-8 2006__________
Not Previously Presented __
Where is this work being published?
Journal Name, Volume, Page, Date ______________________________________
In Preparation ___
Author(s) (First & Last) ___
In-House Address: ___ICE 733 N. Broadway, BRB #772
(Room # and Building Name, Lab, etc.)
Telephone: ____4-3444______ Beeper: ____4-1147_________
Fax: ______________________ E-mail: esteso@jhmi.edu_____

Page 1
Hemorrhagic Endovasculitis is a Proliferative and Time-Dependent Lesion Occurring Secondary to Stoppage of Fetal Placental Vessel Flow.

Paul Esteso BS and Grover M. Hutchins MD; Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD.

Background: Hemorrhagic endovasculitis (HEV) is a lesion of the placenta most often found in association with intrauterine fetal death, where it’s reported distribution is multifocal (10% – 25%) or extensive (> 25%). This is in contrast to live-born infants where the lesions are mostly (98%) focal and associated with fetal placental thrombosis. We hypothesize that HEV is a progressive, proliferative lesion occurring in response to low/no shear conditions in the fetal vasculature such as in fetal death and stem vessel thrombosis. Multiple observations have shown that endothelial cells, which are kept flat when subjected to flow, become nearly cuboidal and proliferate when shear stress is removed. A similar process is seen in the organization of a thrombus and in states of chronic boundary layer separation in vivo.

Methods: We reviewed the autopsy and slides of 60 cases of intrauterine fetal death. Death-to-delivery interval was determined by histologic examination of fetal tissues as described by Genest DR, et al. in 1992. The placental slides of these fetuses were then reviewed to assess the degree of development of HEV. Fetal placental vessels were classified as having contraction, proliferation, septation, or obliteration of the vascular lumen.

Results: HEV correlates strongly with the death-to-delivery interval, moving from contraction to proliferation (>50% at 24 to 48 hrs) to septation (>50% at 4 days to 1 week) and finally obliteration of the vascular lumen, in a progressive manner. This process results from endothelial and vascular smooth muscle cell proliferation achieving luminal obliteration between 1 and 4 weeks of death-to-delivery time in 58% of the cases.

Conclusions: These observations support the concept that HEV is a proliferative process secondary to low/no shear stress on the endothelium resulting from cessation of fetal blood flow as seen in intrauterine fetal demise and stem vessel thrombosis. This is permitted because the ongoing maternal placental circulation maintains viability of fetal placental tissues. As vascular septation progresses erythrocytes are trapped into progressively smaller lumina, giving the appearance of escape into the surrounding tissue. No hemorrhagic, endovasculitic, or thrombotic components of HEV were evident in the present study.