Letters to the Editors

Secondary hypoadrenalism with hypercalcaemia

Sirs, We read with interest the case report of secondary hypoadrenalism presenting with moderate hypercalcaemia (Vasikaran et al., 1994) in which the authors speculate that hypercalcaemia may be exacerbated by hyperthyroidism in the presence of glucocorticoid deficiency. We believe that hypercalcaemia, albeit less severe, can occur in secondary hypoadrenalism without overt hyperthyroidism, as apparently in that case report (Vasikaran et al., 1994). We have recently presented a series of five women whom we believe to have lymphocytic hypophysitis presenting either in the last trimester of pregnancy or early puerperium (Patel et al., 1994). All had secondary adrenal insufficiency at presentation, and 4/5 had secondary hypothyroidism with normocalcaemia. The fifth patient, a 41-year-old woman, presented 2 months after her sixth uncomplicated pregnancy and delivery. Since parturition she had felt generally unwell with lethargy, fainting episodes (BP 90/60, 80/50 lying), aching joints, muscle pains, proximal myopathy and limb girdle muscle wasting; nausea, vomiting, anorexia; and weight loss of 10 kg. She was able to lactate but suffered from recurrent breast abscesses requiring surgical drainage. Short Synacthen test (250 mg i.m.) basal cortisol <50 nmol/l; 60 min, 75 nmol/l. The patient had mild and persistent elevation of serum calcium (see Table 1) from the time of presentation for which she was investigated. PTH was undetectable at <1.5 pmol/l (normal range 2–5). Her free thyroid hormone levels were normal, although her TSH was suppressed.

Hydrocortisone replacement resulted in prompt normalization of serum calcium despite increasing biochemical hyperthyroidism, which by 6 months post partum was clinically obvious and required treatment (see Table 1). This woman too would seem to have had both postpartum hypophysitis and thyroiditis and mild hypercalcaemia, despite initially normal free thyroid hormone levels. It could be argued that the suppressed TSH indicated tissue hyperthyroidism and that this, combined with glucocorticoid deficiency, was the cause of the patient’s mild hypercalcaemia, by the mechanisms discussed by Vasikaran et al. However, the serial calcium measurements show that glucocorticoids alone normalized the serum calcium, despite increasing biochemical hyperthyroidism. Whilst accepting that hyperthyroidism combined with glucocorticoid deficiency may result in exacerbation of hypercalcaemia of adrenal failure, it is possible that, just as in primary adrenal insufficiency, mild hypercalcaemia can occur in secondary adrenal insufficiency without hyperthyroidism.

M. C. Patel and R. N. Clayton
Department of Endocrinology and Diabetic Mellitus,
North Staffordshire Royal Infirmary,
Stoke-on-Trent, Staffordshire ST4 7LN, UK

References

Sirs, Patel and Clayton have presented a series of five patients with lymphocytic hypophysitis all of whom had secondary hypoadrenalism. Four of these five patients also had secondary hypothyroidism and were normocalcaemic whereas the only patient who had sufficient (or arguably marginally elevated) thyroid hormone activity was hypercalcaemic. This is further evidence for the hypothesis that thyroid hormone action is important in the aetiology of hypercalcaemia of hypoadrenalism.

Our contention is that hypercalcaemia is not usually seen in secondary hypoadrenalism because the latter is usually accompanied by overt or subclinical secondary hypothyroidism. All the cases of secondary hypoadrenalism consequent on lymphocytic hypophysitis which presented with hypercalcaemia presumably had thyroiditis, and therefore autonomous thyroid hormone secretion. Irrespective of whether the hypoadrenalism is primary or secondary, the important factor in the aetiology of hypercalcaemia is the presence of sufficient thyroid hormone action.

S. D. Vasikaran*, G. A. Tallis† and W. J. Braund†

*Department of Biochemistry,
Royal Perth Hospital,
GPO Box X2213,
Perth, Western Australia 6001
and †Flinders Medical Centre,
Bedford Park 5042,
South Australia

Sirs, Vasikaran et al. (1994) outline how the hypercalcaemia which may develop in adrenocortical deficiency is largely the result of altered renal handling of calcium, and of unopposed osteoclastic osteolysis. We have previously described how these processes may combine to mask calcium deficiency in a
Table 1 Biochemical markers.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Time post-partum (months)</th>
<th>Ca(^{2+}) (amol/l)</th>
<th>Alb (g/l)</th>
<th>FT4 (pmol/l)</th>
<th>FT3 (pmol/l)</th>
<th>TSH (mU/l)</th>
<th>Thyroid microsomal antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2.72</td>
<td>42</td>
<td>21.5</td>
<td>8.0</td>
<td><0.02</td>
<td>1/100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.87</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.58</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.01</td>
<td>40</td>
<td></td>
<td></td>
<td><0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.71</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC (20/10 mg)</td>
<td>4</td>
<td>2.32</td>
<td>42</td>
<td>24.0</td>
<td>12.9</td>
<td><0.09</td>
<td>1/1600</td>
</tr>
<tr>
<td>CMZ</td>
<td>6</td>
<td></td>
<td></td>
<td>61.0</td>
<td>29.0</td>
<td><0.02</td>
<td></td>
</tr>
</tbody>
</table>

HC, Hydrocortisone; CMZ, carbimazole.

As in their case, the hypoadrenalism in this man was secondary to pituitary disease and it is to be assumed that the renin–angiotensin system was normally functional. Thus, it is likely that the hypercalcaemia was largely the result of increased calcium release from bone, as a result of corticosteroid deficiency, and that this process was exacerbated by hyperthyroxinaemia. Our experience supports the arguments they have put forward, even though it is possible that yet other mechanisms may also be involved. Thus, thyrotoxicosis is itself commonly associated with disorders of calcium metabolism (Ford et al., 1989; Arem et al., 1986; Piccione et al., 1984), and has even been described as a cause of secondary hyperparathyroidism (Barsotti et al., 1979).

Nigel D. C. Sturrock and William Jeffcoat
Department of Diabetes and Endocrinology,
Nottingham City Hospital, Nottingham NG5 1PB, UK

References

