Development of a Rapid and Sensitive LC-MS/MS Assay for Dolutegravir Quantitation in Breast Milk

- were spiked into breast milk
- Captiva plate (Waters, Milford, MA)
- CA) QTRAP interfaced with an LC-40 system (Shimadzu, Kyoto, JN).
- recommendations

Liquid Chromatography Conditions				
Instrument	Shimadzu LC-40 LC System			
Column	Acquity UPLC BEH C8 1.7 μm, 2.1 x 50 mm			
Injection Volume	3 μL			
Mobile Phase A	0.1% Formic Acid in Water			
Mobile Phase B	0.1% Formic Acid in Acetonitrile			
Flow Rate	0.550 mL/min			
Retention Time	0.860 min			

Mass Spectro	ometry Condition
Instrument	SCIEX QTRAP 550
Scan Type	Scheduled MRM
MRM Detection Window	12 s
Dwell Time	50 ms
Polarity	Positive
Ion Source	Turbo Spray
Analyte transitions	420.2→277.1 (C 420.2→127.1 (C
IS transition	426.2→133.1 (C

0.1% Formic Acid in Acetonitrile) using scheduled MRM.

Ashley R. Rackow, Aashish Pandey, Mark A. Marzinke

Johns Hopkins University Baltimore, MD USA

Panel B is the inter-assay study, based on n=18 replicates across 3 separate runs.

RESULTS

1.W. 419.4.g/mol)

'M.W. 425.4 g/mol)

۲ %	Accuracy: Deviation	
	-9.80	
	-8.44	
	2.04	
	2.50	
ŀ	Accuracy:	

% Deviation
6.57
-5.63
-3.10
7.49

<u>Sta</u>	bil	ity	Stud	lies

	Freeze Thaw Stability			Sample Matrix Stability			Inj
QC Levels	Control Mean (ng/mL)	Treated Mean (ng/mL)	% Difference	Control Mean (ng/mL)	Treated Mean (ng/mL)	% Difference	Cor Mo (ng
Low (1.50)	1.44	1.44	-0.116	1.53	1.50	-2.18	1.
Mid (75.0)	74.2	70.6	-4.87	73.0	72.4	-0.845	68
High (800)	860	820	-4.71	820	819	0.122	79

Table 3. Stability Studies. Stability challenges for DTG based on n=6 replicates on each analytical run; % Difference = Difference between control and treatment mean

Freeze Thaw Stability: 3 cycles

- Sample Matrix Stability: 83 hours at room temperature
- Injection Matrix Stability: 6 days at 4°C after initial injection
- Challenge samples are within ±15% of freshly prepared and analyzed specimens.

Matrix Effects

	Matrix Effects (%) ^a		Recovery Efficiency (%) ^b		
QC Levels	DTG	DTG-IS	DTG	DTG-IS	
Low	78.2	78.4	112	109	
Mid	99.3	100	84.9	88.2	
High	87.8	85.9	99.8	101	

^a % M% = Peak area of (post-extracted samples/un-extracted samples) * 100 ^b % RE = Peak area of (pre-extracted samples/post-extracted samples) * 100 ^c % PE = Peak area of (pre-extracted samples/un-extracted samples) * 100

Table 4. Matrix Effects. Matrix effects, as well as extraction efficiency and processing efficiency were determined by the approach of Matuszewski and colleagues⁴. Ion suppression is observed for both analyte and internal standard, particularly at the lower end of the analytical measuring range. While absolute matrix effects are exhibited, the relative matrix effects are negligible, thereby having minimal impact on the accurate quantification of DTG in breast milk.

CONCLUSION

A robust analytical LC-MS/MS method was developed and validated to quantify DTG in human breast milk. The developed method will be useful in supporting clinical trials to better understand multicompartment pharmacokinetics in nursing mothers.

REFERENCES

- 1.Dickenson L, Walimbwa S, Singh P, et al. Infant exposure to dolutegravir through placenta and breast milk transfer: a population pharmacokinetic analysis of DolPHIN-1. Clin Infect Dis. 2021;73(5):e1200–w1207.
- 2.Kobbe R, Schalkwijk S, Dunay G, et al. Dolutegravir in breast milk and maternal and infant plasma during breastfeeding. AIDS. 2016;30(17):2731-2733.
- 3. Mugwanya KK, Hendrix CW, Mugo NR, et al. Pre-exposure prophylaxis use by breastfeeding HIV-Uninfected Women: a prospective short term study of antiretroviral excretion in breast milk and infant absorption. PLoS Med. 2016;13(9):e1002-132.
- 4. Matuszewski BK, Constanzer ML, and Chavez-Eng CM. Strategies for the Assessment of Matrix Effects in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal Chem 2003, 75: 3019-3030.

ACKNOWLEDGEMENTS

This work was partially supported by the Johns Hopkins University Center for AIDS Research (CFAR; P30AI094189).

Contact: Ashley Rackow (arackow1@jhu.edu)