SIXTEEN NOVEL AND NINE NEWLY CONFIRMED ALLELES OF THE HLA-A, -B, -C, AND -DPA1 LOCI IDENTIFIED DURING ROUTINE CLINICAL

Alison J. Gareau, Ana Lazaro-Shiben, Kristin Gay, Marlee Folckomer, Maria Bettinotti Immunogenetics Laboratory, Johns Hopkins University, School of Medicine

Abstract

Aim: Sixteen novel alleles and 9 confirmatory sequences for previously submitted alleles were identified over the course of one year of routine clinical testing.

Methods: HLA typing was performed at high-resolution using the hybrid-capture-based AlloSeq_Tx17 kit from CareDx for next generation sequencing (NGS). The alleles were initially identified as novel when the NGS sequencing results showed well-defined and distinct mismatches to all the HLA allelic sequences for the locus in question. The novel alleles were confirmed with repeat sequencing or segregation within a family.

Results: Eleven of the 25 alleles were found in African-American individuals (44%), 9 (36%) in Caucasian individuals, 1 (0.25%) in an Asian individual, and 4 (1%) in individuals of unknown race. Twenty-one (84%) out of 25 alleles were single substitution variants when compared with their most similar allele, with 5 of these (23%) being silent substitutions with no change in the amino acid. Four (16%) out of 25 showed two or more substitutions. HLA-A*29:160 was observed three times within one family. DPA1*01:03:31, *01:58:01 and *02:01:16 each appeared twice in one family. Conforming to the linkage disequilibrium (LD) between HLA-B and C, all new HLA-B alleles were associated with the HLA-C allele linked to the ancestral HLA-B allele. For example, HLA-B*15:623 showed linkage with C*04:03 (B*15:21, C*04:03 - AFA 0.00341 rank 60);B*14:109 with C*08:02 (B*14:02, C*08:02 - AFA 0.02076 rank 13); B*07:456 with C*07:02, (B*07:02, C*07:02 - Cau 0.13782 rank 1); B*42:32 with C*17:01 (B*42:01, C*17:01 - AFA 0.05318, rank 4); B*39:177 with C*12:03 (B*39:01, C*12:03 - Cau 0.006 rank 31) and B*44:545 with C*04:01 (B*44:03, C*04:01 - Cau 0.014 rank 19).

Conclusion: Approximately one-third (36%) of these alleles were discovered in patients awaiting bone marrow transplantation or in potential donors and 44% in candidates for solid organ transplantation. Allele-level resolution typing is important not only for bone marrow transplantation but also in the solid organ transplantation setting to investigate eplet-based matching and to supplement current antibody analysis practices. It is very important to continue identifying and publishing these allele sequences in collaboration with the IMGT and the IPD-IMGT/HLA Database for the most robust assignment of alleles.

Novel Alleles/ Confirmatory Hybrid-Capture-based AlloSeq_Tx17 CareDx

Extraction

Fragmentation Indexing Enrichment

Size Selection
Purification
Pooling

Probe Hybridization
Capture
Post Enrichment

Purification

Dilution 4nM
Denaturation
Final Pooled Loading

Extended Haplotype of the New Allele

Cell	Pt Type	Race/Ethnicity	HLA-A	HLA-B	HLA-C	HIA-DRB1	DRB3/4/5	HLA-DQA1	HLA-DQB	HLA-DPA1	HLA-DPB1
JH0001	ВМ	Unknown	24:07:01	15:623	04:03:01	15:02:01	B5 01:01:01	01:02:01	06:01:01	02:02:02	31:01P
JH0002	BMFam	African American	30:01:01	14:109	08:02:01	03:01:10,	B302:02:01	05:01:01	02:01:01	01:03:01	02:01P
JH0008	BMFam	Unknown	23:01:01	07:02:01	15:05:02	03:01:01	B302:02:01	05:01:01	02:01:01	02:01:16	13:01P
JH0012	BMFam	Caucasian	24:02:01	44:02:01	05:01:01	04:01:01	B401:03:01	03:03:01	03:01:01	01:03:31	02:01P
JH0014	ВМ	Caucasian	30:01:01	42:01:01	17:01:01	03:01:01	B302:02:01	05:01:01	02:01:01	02:22:02	01:01:01
JH0015	BMFam	African American	29:160	53:01:01	04:01:01	13:02:01	B303:01:01	01:02:01	06:09:01	02:01:01	01:01 P
JH0021	BMFam	Unknown	02:1054	35:12:01	04:01:01	14:02:01	B301:01:02	05:03:01	03:01:01	01:03:01	04:02P
JH0023	ВМ	Caucasian	01:01:01	15:632	03:04:01	01:01:01		01:01:01	05:01:01	01:03:01	03:01 P

HLA-B-C LD from the ancestral HLA-B/C association

HLA-B	HLA-C	HLA-B	HLA-C	EUR_freq	EUR_rank	AFA_freq	AFA_rank	API_freq	API_rank
07:456	03:04:01	0702g	03:04	0.00006	229	0.00046	138	0.00000	NA
44:545	04:01:01	4403	0401g	0.01434	19	0.02888	8	0.00202	73
15:623	04:03:01	1521	0403	0.00000	NA	0.00000	NA	0.00341	60
14:109	08:02:01	1402	0802	0.03038	9	0.02076	13	0.00114	108
39:177	12:03:01	3901g	1203	0.00616	31	0.00187	76	0.00029	173
42:32	17:01:01	4201	1701g	0.00000	NA	0.05318	4	0.00000	N/
15:632	03:04:01	15:01:01:01	03:04	0.02436	11	0.00291	57	0.00159	82
58:01:01	03:596	5801g	0302	0.00146	53	0.01039	27	0.05543	2

Novel & Confirmatory Alleles

Novel Allele	Most Homologous Allele	Difference (number of nucleotides)	Codons changes	Amino acid change
A *29:160 Conf	A *29:02:01:01	1Ex3	A GC to G GC	205 S to G
A *03:443	A *03:01:01:01	1Ex2	CGC->CAC	17R to H
		1 Intron 6	2606 C->T	
A *03:420 Conf	A *03:01:01:01	1Ex1	GTC->ATC	(-22) V to I
A *32:01:51	A *32:01:01:01	1Ex5	ATC->ATT	287 Silent I
A *33:XX	A *33:03:01	1Ex4	AC C ->AC A	200 Silent T
		1 5'UTR	(-196) T->C	
A *02:987 Conf	A *02:01:01:01	1Ex4	TG C ->TG G	259 C to W
A *02:1054	A *02:17:02:01	1Ex2	CA G ->CA C	87 Q to H
		1 Intron 5	1269 A->C	
B *15:623	B *15:21:01:01	1Ex 2	G TG-> C TG	103V to L
		1Ex2	CC G ->CC	105 Silent P
		1Ex2	T AT->CAT	113 Y to H
		1Ex2	AC G ->AC C	138 Silent T
		1Ex2	G A G->G T G	152 E-to V
B *14:109	B *14:02:01:01	1Ex5	A G G->A A G	309 to K
B *07:456	B *07:02:01:01	Lider peptide	(-16) G TC-> C TC	(-16) V to L
B *42:32	B *42:01:01:01	1Ex3	TAC->TCC	116 Y to S
B *39:177 conf	B *39:01:01	1Ex6	T A C->T G C	320 Y to C
		Intron 5	2407 T->C	
B *44:545	B *44:03:01:01	1Ex2	G CG-> T CG	81 A to S
		1 3'UTR	3412 G->T	
		1 3'UTR	3472 C->T	
		1 3'UTR	3507 A->T	
B *53:01:28	B *53:01:01:01	1Ex4	CC C ->CC T	195 Silent P
B *15:632	B *15:01:01:01	1Ex6	G C G->G T G	324 A toV
C *03:596	C *03:02:02:05	1Ex3	C T C->C A T	110 L to H
DPA1 *01:58:01:01 Con	f DPA 1*01:33	1Ex2	ACC->GCC	83 T toA
		1Ex2	AAC->AAT	84 Silent N
DPA1 *02:01:16 Conf	DPA1 *02:01:01:01	1Ex3	AC C ->AC G	90 Silent T
		1Ex3	AAC->AAT	118 silent N
		1Ex3	CC A ->CC G	127 Silent P
DPA1 *02:64	DPA1 *02:02:02:01	1Ex1	A T G->ACG	(-31.2) M toT
DPA1 *02:43 Conf	DPB1 *02:01:01:01	1Ex1	AAT->AGT	84 N to S
DPA1 *01:87Q Conf	DPA1 *01:03:01:01	1Ex1	A T G->A C G	(-31.2) M toT
DPA1 *01:03:31 Conf	DPA1 *01:03:01:01	1Ex3	TAC->TAT	150 Silent Y
DPA1 *01:100	DPA1 *01:03:01:01	1Ex2	G C G->G T G	3 A to V
DPA1 *02:22:02	DPA1 *02:22	1 Ex2	GGA->GG	20 Silent G
			G C G->G A G	

Conclusions

- ☐ Sixteen novel alleles and 9 confirmatory sequences from previously submitted alleles were identified over the course of one year of routine clinical testing. HLA typing was performed at high-resolution using next generation sequencing (NGS).
- ☐ Twenty-one (84%) out of 25 alleles were single substitution variants when compared with their most similar allele, with 5 of these (23%) being silent substitutions with no change in the amino acid. Four (16%) out of 25 showed two or more substitutions.
- ☐ It is very important to continue identifying and publishing new allele sequences in collaboration with the IMGT and the IPD-IMGT/HLA Database for a most robust assignment of alleles.