SIXTEEN NOVEL AND NINE NEWLY CONFIRMED ALLELES OF THE HLA-A, -B, -C, AND -DPA1 LOCI IDENTIFIED DURING ROUTINE CLINICAL Alison J. Gareau, Ana Lazaro-Shiben, Kristin Gay, Marlee Folckomer, Maria Bettinotti Immunogenetics Laboratory, Johns Hopkins University, School of Medicine #### **Abstract** Aim: Sixteen novel alleles and 9 confirmatory sequences for previously submitted alleles were identified over the course of one year of routine clinical testing. Methods: HLA typing was performed at high-resolution using the hybrid-capture-based AlloSeq_Tx17 kit from CareDx for next generation sequencing (NGS). The alleles were initially identified as novel when the NGS sequencing results showed well-defined and distinct mismatches to all the HLA allelic sequences for the locus in question. The novel alleles were confirmed with repeat sequencing or segregation within a family. Results: Eleven of the 25 alleles were found in African-American individuals (44%), 9 (36%) in Caucasian individuals, 1 (0.25%) in an Asian individual, and 4 (1%) in individuals of unknown race. Twenty-one (84%) out of 25 alleles were single substitution variants when compared with their most similar allele, with 5 of these (23%) being silent substitutions with no change in the amino acid. Four (16%) out of 25 showed two or more substitutions. HLA-A*29:160 was observed three times within one family. DPA1*01:03:31, *01:58:01 and *02:01:16 each appeared twice in one family. Conforming to the linkage disequilibrium (LD) between HLA-B and C, all new HLA-B alleles were associated with the HLA-C allele linked to the ancestral HLA-B allele. For example, HLA-B*15:623 showed linkage with C*04:03 (B*15:21, C*04:03 - AFA 0.00341 rank 60);B*14:109 with C*08:02 (B*14:02, C*08:02 - AFA 0.02076 rank 13); B*07:456 with C*07:02, (B*07:02, C*07:02 - Cau 0.13782 rank 1); B*42:32 with C*17:01 (B*42:01, C*17:01 - AFA 0.05318, rank 4); B*39:177 with C*12:03 (B*39:01, C*12:03 - Cau 0.006 rank 31) and B*44:545 with C*04:01 (B*44:03, C*04:01 - Cau 0.014 rank 19). Conclusion: Approximately one-third (36%) of these alleles were discovered in patients awaiting bone marrow transplantation or in potential donors and 44% in candidates for solid organ transplantation. Allele-level resolution typing is important not only for bone marrow transplantation but also in the solid organ transplantation setting to investigate eplet-based matching and to supplement current antibody analysis practices. It is very important to continue identifying and publishing these allele sequences in collaboration with the IMGT and the IPD-IMGT/HLA Database for the most robust assignment of alleles. ## Novel Alleles/ Confirmatory Hybrid-Capture-based AlloSeq_Tx17 CareDx ## Extraction Fragmentation Indexing Enrichment Size Selection Purification Pooling Probe Hybridization Capture Post Enrichment **Purification** Dilution 4nM Denaturation Final Pooled Loading ### **Extended Haplotype of the New Allele** | Cell | Pt Type | Race/Ethnicity | HLA-A | HLA-B | HLA-C | HIA-DRB1 | DRB3/4/5 | HLA-DQA1 | HLA-DQB | HLA-DPA1 | HLA-DPB1 | |--------|---------|---------------------|----------|----------|----------|-----------|-------------|----------|----------|----------|----------------| | JH0001 | ВМ | Unknown | 24:07:01 | 15:623 | 04:03:01 | 15:02:01 | B5 01:01:01 | 01:02:01 | 06:01:01 | 02:02:02 | 31:01P | | JH0002 | BMFam | African
American | 30:01:01 | 14:109 | 08:02:01 | 03:01:10, | B302:02:01 | 05:01:01 | 02:01:01 | 01:03:01 | 02:01P | | JH0008 | BMFam | Unknown | 23:01:01 | 07:02:01 | 15:05:02 | 03:01:01 | B302:02:01 | 05:01:01 | 02:01:01 | 02:01:16 | 13:01P | | JH0012 | BMFam | Caucasian | 24:02:01 | 44:02:01 | 05:01:01 | 04:01:01 | B401:03:01 | 03:03:01 | 03:01:01 | 01:03:31 | 02:01P | | JH0014 | ВМ | Caucasian | 30:01:01 | 42:01:01 | 17:01:01 | 03:01:01 | B302:02:01 | 05:01:01 | 02:01:01 | 02:22:02 | 01:01:01 | | JH0015 | BMFam | African
American | 29:160 | 53:01:01 | 04:01:01 | 13:02:01 | B303:01:01 | 01:02:01 | 06:09:01 | 02:01:01 | 01:01 P | | JH0021 | BMFam | Unknown | 02:1054 | 35:12:01 | 04:01:01 | 14:02:01 | B301:01:02 | 05:03:01 | 03:01:01 | 01:03:01 | 04:02P | | JH0023 | ВМ | Caucasian | 01:01:01 | 15:632 | 03:04:01 | 01:01:01 | | 01:01:01 | 05:01:01 | 01:03:01 | 03:01 P | #### **HLA-B-C LD from the ancestral HLA-B/C association** | HLA-B | HLA-C | HLA-B | HLA-C | EUR_freq | EUR_rank | AFA_freq | AFA_rank | API_freq | API_rank | |----------|----------|-------------|-------|----------|----------|----------|----------|----------|----------| | 07:456 | 03:04:01 | 0702g | 03:04 | 0.00006 | 229 | 0.00046 | 138 | 0.00000 | NA | | 44:545 | 04:01:01 | 4403 | 0401g | 0.01434 | 19 | 0.02888 | 8 | 0.00202 | 73 | | 15:623 | 04:03:01 | 1521 | 0403 | 0.00000 | NA | 0.00000 | NA | 0.00341 | 60 | | 14:109 | 08:02:01 | 1402 | 0802 | 0.03038 | 9 | 0.02076 | 13 | 0.00114 | 108 | | 39:177 | 12:03:01 | 3901g | 1203 | 0.00616 | 31 | 0.00187 | 76 | 0.00029 | 173 | | 42:32 | 17:01:01 | 4201 | 1701g | 0.00000 | NA | 0.05318 | 4 | 0.00000 | N/ | | 15:632 | 03:04:01 | 15:01:01:01 | 03:04 | 0.02436 | 11 | 0.00291 | 57 | 0.00159 | 82 | | 58:01:01 | 03:596 | 5801g | 0302 | 0.00146 | 53 | 0.01039 | 27 | 0.05543 | 2 | #### **Novel & Confirmatory Alleles** | Novel Allele | Most Homologous
Allele | Difference
(number of
nucleotides) | Codons changes | Amino acid change | |------------------------------|---------------------------|--|---------------------------------|-------------------| | A *29:160 Conf | A *29:02:01:01 | 1Ex3 | A GC to G GC | 205 S to G | | A *03:443 | A *03:01:01:01 | 1Ex2 | CGC->CAC | 17R to H | | | | 1 Intron 6 | 2606 C->T | | | A *03:420 Conf | A *03:01:01:01 | 1Ex1 | GTC->ATC | (-22) V to I | | A *32:01:51 | A *32:01:01:01 | 1Ex5 | ATC->ATT | 287 Silent I | | A *33:XX | A *33:03:01 | 1Ex4 | AC C ->AC A | 200 Silent T | | | | 1 5'UTR | (-196) T->C | | | A *02:987 Conf | A *02:01:01:01 | 1Ex4 | TG C ->TG G | 259 C to W | | A *02:1054 | A *02:17:02:01 | 1Ex2 | CA G ->CA C | 87 Q to H | | | | 1 Intron 5 | 1269 A->C | | | B *15:623 | B *15:21:01:01 | 1Ex 2 | G TG-> C TG | 103V to L | | | | 1Ex2 | CC G ->CC | 105 Silent P | | | | 1Ex2 | T AT->CAT | 113 Y to H | | | | 1Ex2 | AC G ->AC C | 138 Silent T | | | | 1Ex2 | G A G->G T G | 152 E-to V | | B *14:109 | B *14:02:01:01 | 1Ex5 | A G G->A A G | 309 to K | | B *07:456 | B *07:02:01:01 | Lider peptide | (-16) G TC-> C TC | (-16) V to L | | B *42:32 | B *42:01:01:01 | 1Ex3 | TAC->TCC | 116 Y to S | | B *39:177 conf | B *39:01:01 | 1Ex6 | T A C->T G C | 320 Y to C | | | | Intron 5 | 2407 T->C | | | B *44:545 | B *44:03:01:01 | 1Ex2 | G CG-> T CG | 81 A to S | | | | 1 3'UTR | 3412 G->T | | | | | 1 3'UTR | 3472 C->T | | | | | 1 3'UTR | 3507 A->T | | | B *53:01:28 | B *53:01:01:01 | 1Ex4 | CC C ->CC T | 195 Silent P | | B *15:632 | B *15:01:01:01 | 1Ex6 | G C G->G T G | 324 A toV | | C *03:596 | C *03:02:02:05 | 1Ex3 | C T C->C A T | 110 L to H | | DPA1 *01:58:01:01 Con | f DPA 1*01:33 | 1Ex2 | ACC->GCC | 83 T toA | | | | 1Ex2 | AAC->AAT | 84 Silent N | | DPA1 *02:01:16 Conf | DPA1 *02:01:01:01 | 1Ex3 | AC C ->AC G | 90 Silent T | | | | 1Ex3 | AAC->AAT | 118 silent N | | | | 1Ex3 | CC A ->CC G | 127 Silent P | | DPA1 *02:64 | DPA1 *02:02:02:01 | 1Ex1 | A T G->ACG | (-31.2) M toT | | DPA1 *02:43 Conf | DPB1 *02:01:01:01 | 1Ex1 | AAT->AGT | 84 N to S | | DPA1 *01:87Q Conf | DPA1 *01:03:01:01 | 1Ex1 | A T G->A C G | (-31.2) M toT | | DPA1 *01:03:31 Conf | DPA1 *01:03:01:01 | 1Ex3 | TAC->TAT | 150 Silent Y | | DPA1 *01:100 | DPA1 *01:03:01:01 | 1Ex2 | G C G->G T G | 3 A to V | | DPA1 *02:22:02 | DPA1 *02:22 | 1 Ex2 | GGA->GG | 20 Silent G | | | | | G C G->G A G | | #### Conclusions - ☐ Sixteen novel alleles and 9 confirmatory sequences from previously submitted alleles were identified over the course of one year of routine clinical testing. HLA typing was performed at high-resolution using next generation sequencing (NGS). - ☐ Twenty-one (84%) out of 25 alleles were single substitution variants when compared with their most similar allele, with 5 of these (23%) being silent substitutions with no change in the amino acid. Four (16%) out of 25 showed two or more substitutions. - ☐ It is very important to continue identifying and publishing new allele sequences in collaboration with the IMGT and the IPD-IMGT/HLA Database for a most robust assignment of alleles.